ایزومتری ها 2- ایزومتری های تعمیم یافته و قضیه مازور – اولام

thesis
abstract

فرض کنیم xوy فضاهای نرمدارحقیقی باشند? بنا به قضیه مازور- اولام هرطولپای پوشاt:x?y (درحد انتقال) خطی– حقیقی است . در این پایان نامه که مراجع اصلی آن[9] و[23] هستند تعمیم هایی از این قضیه آورده می شود. ابتدا نشان می دهیم هرگاه u_1 یک زیر مجموعه ی ستاره ای شکل و باز فضای نرمدار حقیقی b_1 باشد هرطولپای t از u_1 به فضای نرمدار حقیقی دیگری مانند b_2 کهt(u_1) درb_2 باز باشد به یک طولپای خطی– حقیقی از b_1 به b_2 گسترش می یابد. سپس با معرفی فضاهای 2- نرمدار و مفهوم 2- طولپاهای تعمیم یافته? تعمیمی از قضیه مازور– اولام برای چنین طولپاهایی ارائه می شود . کلمات کلیدی : آفین? طولپا ? فضای 2- نرمدار ? قضیه مازور- اولام ? 2- طولپا ? 2- طولپای تعمیم یافته .

similar resources

فضاهای متریک واره و تعمیم قضیه مازور-اولام

فرض کنیم n1و n2 فضای های نرمدار حقیقی باشند, بنا به قضیه مازور-اولام هر طولپای دوسویی t:n_1 ?n_2آفین است. در این پایان نامه که مرجع اصلی آن [5]است، ابتدا مفهوم فضای متریک واره که تعمیم فضای متریک است، و مفهوم نقطه میانی برای دو نقطه از فضای متریک واره معرفی می شود. سپس تعمیمی از قضیه مازور-اولام برای نگاشتهای پوشای حافظ زیرفاصله بین فضاهای متریک واره به طور قوی انعکاسی، که در آن ها همواره نق...

ایزومتری های 2- موضعی و خودریختی های 2- موضعی

چکیده یک نگاشت (نه لزوماً خطی) مانند t:x?y بین فضاهای باناخ x و y یک ایزومتری 2- موضعی نامیده می شود هرگاه برای هر f,g?a، ایزمتری خطی پوشای s:x?y موجود باشد که t(x)=s(x) و t(y)=s(y). در حالتی که a یک جبر باناخ باشد، نگاشت t:a?a خودریختی 2- موضعی نامیده می شود هرگاه برای هر f,g?a، خودریختی s روی a موجود باشد که t(f)=s(f) و t(g)=s(g). در این پایان نامه که مراجع اصلی آن [af] و [hmot] می ب...

15 صفحه اول

قضیه ی مازور-اولام برای فضاهای نرم دار احتمالی

صورت کلاسیک قضیه ی مازور-اولام بیان میکند که هر نگاشت طولپای پوشا بین دو فضای نرم دار یک نگاشت آفین است. این قضیه در سال 1932 توسط مازور و اولام به اثبات رسید. حال هدف از این پایان نامه اثبات قضیه ی مازور-اولام برای فضاهای نرم دار احتمالی تعریف شده توسط السینا، شوایزر و اسکلار است.

ایزمتری ها،شبه ایزومتری ها و نگاشتهای حافظ تعامد

میتوان گفت ایزومتریها تبدیلاتی هستند که فاصله بین عناصر را حفظ میکنند.اینگونه تبدیلات در مطالعه هندسه ای که مبتنی بر حرکات صلب مانند انتقالها و دورانهاست از اهمیت ویژه ای برخوردارند.در این پایان نامه به مطالعه چنین تبدیلاتی می پردازیم و خصوصیات این نگاشتها و پایایی آنهارا در فضاهای باناخ ،هیلبرت و c*-مدولهای هیلبرت بررسی می کنیم،سپس نگاهی به شبه ایزومتریهای حقیقی مقدار داشته و درانتها نگاشتهای ...

15 صفحه اول

مسئله الکساندروف و تعمیم هایی از قضیه ماژور - اولام

در این پایان نامه قصد داریم مسئله الکساندروف و تعمیم هایی از قضیه ماژور-اولام را بیان کنیم. برای این منظوردر فصل اول به معرفی فضاهای نرمدار، n- نرم و همچنین فضاهای نرمدار نا ارشمیدسی، n- نرم نا ارشمیدسیمی پردازیم. سپس در فصل دوم یک قضیه ماژور- اولام موضعی را بیان می کنیم، همچنین قضیه مازور- اولام را در فضای 2-نرم و n –نرم و n –نرم نا ارشمیدسی مطرح می کنیم. نهایتا در فصل آخر قصد داریم مسئله الک...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023